24,571 research outputs found

    Ionized polycyclic aromatic hydrocarbons in space

    Get PDF
    The mid-infrared spectrum of a continuously increasing number of stellar objects, planetary and reflection nebulae, H-II regions and extragalactic sources show a distinctive set of broad emission features at 3.3, 3.4, 6.2, 7.7, 8.6, and 11.3 micron known collectively as the unidentified infrared emission bands. A model is summarized in which the bands arise from positively charged polycyclic hydrocarbons (PAH's) on the basis of their low ionization potential and the excellent agreement between the emission bands and laboratory spectra of auto exhaust which contains these types of molecules. The proposed presence of PAHs in such a variety of objects points to their presence in the interstellar medium. Out of a previously published collection of solid state PAH radical cation spectra five were selected on the basis of the unique thermodynamic stability of their carrier and compared directly to the wavelengths of the DIB's. Although the match seems quite favorable, strongly suggesting that PAH radicals are the long sought after carrier of the diffuse interstellar absorption bands, much laboratory work must be done to test this hypothesis

    b-Hadron Physics at LEP

    Full text link
    A personal overview of the current status of physics results from LEP using b-hadrons is presented. Emphasis is placed on those areas where analyses are not yet finalised and there remains significant activity. Results are presented in the areas of b-quark fragmentation, b-hadron lifetimes, charm counting in b-decays and Vcb.Comment: 4 pages TEX, 4 figure

    Infrared absorption and emission characteristics of interstellar PAHs

    Get PDF
    The mid-infrared interstellar emission spectrum with features at 3.28, 6.2, 7.7, 8.7 and 11.3 microns is discussed in terms of the Polycyclic Aromatic Hydrocarbon (PAH) hypothesis, which is based on the suggestive, but inconclusive comparison between the interstellar emission spectrum with the infrared absorption and Raman spectra of a few PAHs. The fundamental vibrations of PAHs and PAH-like species which determine the IR and Raman properties are discussed. Interstellar IR band emission is due to relaxation from highly vibrationally excited PAHs excited by ultraviolet photons. The excitation/emission process is described and the IR fluorescence from one PAH, chrysene, is traced. Generally, there is sufficient energy to populate several vibrational levels in each mode. Molecular vibrational potentials are anharmonic and emission from these higher levels will fall at lower frequencies and produce weak features to the red of the stronger fundamentals. This process is also described and can account for some spectroscopic details of the interstellar emission spectra previously unexplained. Analysis of the interstellar spectrum shows that PAHs contain between 20 and 30 carbon atoms are responsible for the emission

    The hydrogen coverage of interstellar PAHs

    Get PDF
    The rate at which the CH bond in interstellar Polycyclic Aromatic Hydrocarbons (PAHs) rupture due to the absorption of a UV photon has been calculated. The results show that small PAHs (less than or equal to 25 carbon atoms) are expected to be partially dehydrogenated in regions with intense UV fields, while large PAHs (greater than or equal to 25 atoms) are expected to be completely hydrogenated in those regions. Because estimate of the carbon content of interstellar PAHs lie in the range of 20 to 25 carbon atoms, dehydrogenation is probably not very important. Because of the absence of other emission features besides the 11.3 micrometer feature in ground-based 8 to 13 micrometer spectra, it has been suggested that interstellar PAHs are partially dehydrogenated. However, IRAS 8 to 22 micrometer spectra of most sources that show strong 7.7 and 11.2 micrometer emission features also show a plateau of emission extending from about 11.3 to 14 micrometer. Like the 11.3 micrometer feature, this new feature is attributed to the CH out of plane bending mode in PAHs. This new feature shows that interstellar PAHs are not as dehydrogenated as estimated from ground-based 8 to 13 micrometer spectra. It also constrains the molecular structure of interstellar PAHs. In particular, it seems that very condensed PAHs, such as coronene and circumcoronene, dominate the interstellar PAH mixture as expected from stability arguments

    Nature of the Coast Batholith, Southeastern Alaska: Are there Archean analogs

    Get PDF
    The comparison of Phanerozoic Andean margins and their possible Archean analogs was made. Geochemical and isotopic data was presented for the episodic intrusion of the elongate, continental margin Coast batholith of southeastern Alaska and British Columbia. The batholith was characterized as having been formed in direct response to subduction in accreted terranes of oceanic or slope origin. It was concluded that there were good analogs of the Coast batholith in Archean plutonic suites

    Role of geometrical symmetry in thermally activated processes in clusters of interacting dipolar moments

    Full text link
    Thermally activated magnetization decay is studied in ensembles of clusters of interacting dipolar moments by applying the master-equation formalism, as a model of thermal relaxation in systems of interacting single-domain ferromagnetic particles. Solving the associated master-equation reveals a breakdown of the energy barrier picture depending on the geometrical symmetry of structures. Deviations are most pronounced for reduced symmetry and result in a strong interaction dependence of relaxation rates on the memory of system initialization. A simple two-state system description of an ensemble of clusters is developed which accounts for the observed anomalies. These results follow from a semi-analytical treatment, and are fully supported by kinetic Monte-Carlo simulations.Comment: 9 pages, 6 figure

    Laser anemometer measurements of trailing vortices in water

    Get PDF
    A series of measurements of trailing vortices behind lifting hydrofoils is described. These measurements were made in the Caltech Free-Surface Water Tunnel, using a laser-Doppler velocimeter to measure two components of velocity in the vortex wake. Two different model planforms were tested, and measurements were made at several free-stream velocities and angles of attack for each. Velocity profiles were measured at distances downstream of the model of from five to sixty chord lengths. These measurements are the first results of a continuing experimental programme. In § 3 of this paper, the theory of trailing vortices is discussed. The effects of ‘vortex wandering’ upon the measurements are computed, and the corrected results are seen to be in reasonable agreement with the theory

    Late biological effects of heavy charged particles: Cataracts, vascular injury and life shortening in mice

    Get PDF
    Risks associated with extended habitation in a space environment, particularly hazards to space workers that might result from exposure to high energy heavy ion particles (HZE), were studied. Biological effects of HZE were investigated in mice to assess their potential adverse health hazards. The potential effects of HZE particles on the crystalline lens of the eye and the carcinogenic effects and blood vessel (vascular) damage from radiation were evaluated by a risk assessment. Animal experiments to evaluate dose response relationships for tumor induction/promotion and for vascular injury were introduced. Cataract productions and preliminary results on cacinogenic and vascular effects are presented for perspective

    Shaking a Box of Sand

    Full text link
    We present a simple model of a vibrated box of sand, and discuss its dynamics in terms of two parameters reflecting static and dynamic disorder respectively. The fluidised, intermediate and frozen (`glassy') dynamical regimes are extensively probed by analysing the response of the packing fraction to steady, as well as cyclic, shaking, and indicators of the onset of a `glass transition' are analysed. In the `glassy' regime, our model is exactly solvable, and allows for the qualitative description of ageing phenomena in terms of two characteristic lengths; predictions are also made about the influence of grain shape anisotropy on ageing behaviour.Comment: Revised version. To appear in Europhysics Letter

    New broad 8Be nuclear resonances

    Full text link
    Energies, total and partial widths, and reduced width amplitudes of 8Be resonances up to an excitation energy of 26 MeV are extracted from a coupled channel analysis of experimental data. The presence of an extremely broad J^pi = 2^+ ``intruder'' resonance is confirmed, while a new 1^+ and very broad 4^+ resonance are discovered. A previously known 22 MeV 2^+ resonance is likely resolved into two resonances. The experimental J^pi T = 3^(+)? resonance at 22 MeV is determined to be 3^-0, and the experimental 1^-? (at 19 MeV) and 4^-? resonances to be isospin 0.Comment: 16 pages, LaTe
    • …
    corecore